56=-16t^2+24t+160

Simple and best practice solution for 56=-16t^2+24t+160 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 56=-16t^2+24t+160 equation:



56=-16t^2+24t+160
We move all terms to the left:
56-(-16t^2+24t+160)=0
We get rid of parentheses
16t^2-24t-160+56=0
We add all the numbers together, and all the variables
16t^2-24t-104=0
a = 16; b = -24; c = -104;
Δ = b2-4ac
Δ = -242-4·16·(-104)
Δ = 7232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7232}=\sqrt{64*113}=\sqrt{64}*\sqrt{113}=8\sqrt{113}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{113}}{2*16}=\frac{24-8\sqrt{113}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{113}}{2*16}=\frac{24+8\sqrt{113}}{32} $

See similar equations:

| 9–2v=-v | | 7+3x+5x=7 | | 5(-3x-2)-(2x-3)=-4(4x+5)+11 | | 5k+3k=4 | | -2(5s-5)-10=-3(9s+0)-5 | | Y=3x.23 | | 7x/8-3=x/2+6 | | -3(n+1)=1-5n | | 3-5x-6x=-52 | | 3/2x-1/8=-1/4x+5/2 | | 5+x+(−2)=−8 | | 0=-16t^2+24t+160 | | 2.97x+.99=3x+1 | | 3(6x+7)=27x=21-9x | | 6(x-9)=-72 | | 2/3n-11=4-n | | 5(1+x)=11+2x | | -2(x+3)=-3 | | 5-6n=11-4n | | 4a+3=a+12 | | 3+y/2=-5 | | 8x/3-1=63 | | m/3=124 | | 15x+6=9×+6 | | V+6=2+3v | | 1/3x-3=15 | | 10y=6y+36 | | -9-5=5x+1-4x | | -35-7x=(x+5) | | 0.24(24)+0.04x=0.12(6+x) | | 8z+24-3z-12=2z-6+22-8 | | -2v-6=-2-v |

Equations solver categories